101 research outputs found

    Effect of Ceramic Scaffold Architectural Parameters on Biological Response.

    Get PDF
    Numerous studies have focused on the optimization of ceramic architectures to fulfill a variety of scaffold functional requirements and improve biological response. Conventional fabrication techniques, however, do not allow for the production of geometrically controlled, reproducible structures and often fail to allow the independent variation of individual geometric parameters. Current developments in additive manufacturing technologies suggest that 3D printing will allow a more controlled and systematic exploration of scaffold architectures. This more direct translation of design into structure requires a pipeline for design-driven optimization. A theoretical framework for systematic design and evaluation of architectural parameters on biological response is presented. Four levels of architecture are considered, namely (1) surface topography, (2) pore size and geometry, (3) porous networks, and (4) macroscopic pore arrangement, including the potential for spatially varied architectures. Studies exploring the effect of various parameters within these levels are reviewed. This framework will hopefully allow uncovering of new relationships between architecture and biological response in a more systematic way as well as inform future refinement of fabrication techniques to fulfill architectural necessities with a consideration of biological implications.The authors gratefully acknowledge the financial support of the Gates Cambridge Trust and Geistlich Pharma AG.This is the final version of the article. It first appeared from Frontiers via http://dx.doi.org/10.3389/fbioe.2015.0015

    Fabrication of Porous Hydroxyapatite through Combination of Sacrificial Template and Direct Foaming Techniques

    Get PDF
    The porous hydroxyapatite (HA) bioceramics were prepared through combination of sacrificial template and direct foaming techniques using PMMA granules (varied from 5 to 50 wt% in content) as a template and H2O2 solution (varied from 5 to 30 wt% in concentration) as a foaming agent, respectively. The effects of PMMA content and H2O2 concentration on final porosity, microstructure and mechanical strengths were studied. The porous samples using PMMA provided the porosity ranging from 52% to 75%, the samples using H2O2 had the porosity ranging from 82% to 85%, and the sample using both pore formers provided the porosity ranging between 84% and 90%. The higher content of PMMA and concentration of H2O2 led the porosity increased, leading to a decrease in the compressive and flexural strengths. Furthermore, this combination technique allowed interconnected pores having two levels of pore size, which were come from PMMA and H2O2. The PMMA formed the small pores with the diameter ranging between 100 and 300 μm, while H2O2 provided the larger pores with the diameter ranging from 100 to 1,000 μm depending on concentration

    Feature importance in multi-dimensional tissue-engineering datasets: random forest assisted optimization of experimental variables for collagen scaffolds

    Get PDF
    Ice-templated collagen-based tissue-engineering scaffolds are ideal for controlled tissue regeneration since they mimic the micro-environment experienced in vivo. The structure and properties of scaffolds are fine-tuned during fabrication by controlling a number of experimental parameters. However, this parameter space is large and complex, rendering the interpretation of results and selection of optimal parameters to be challenging in practice. This paper investigates the impact of a cross section of this parameter space (drying conditions and solute environment) on the scaffold microstructure. Qualitative assessment revealed the previously unreported impact of drying temperature and pressure on pore wall roughness, and confirmed the influence of collagen concentration, solvent type, and solute addition on pore morphology. For quantitative comparison, we demonstrate the novel application of random forest regression to analyze multi-dimensional biomaterials datasets, and predict microstructural attributes for a scaffold. Using these regression models, we assessed the relative importance of the input experimental parameters on quantitative pore measurements. Collagen concentration and pH were found to be the largest factors in determining pore size and connectivity. Furthermore, circular dichroism peak intensities were also revealed to be a good predictor for structural variations, which is a parameter that has not previously been investigated for its effect on a scaffold microstructure. Thus, this paper demonstrates the potential for predictive models such as random forest regressors to discover novel relationships in biomaterials datasets. These relationships between parameters (such as circular dichroism spectra and pore connectivity) can therefore also be used to identify and design further avenues of investigation within biomaterials

    Synthesis, characterization and modelling of zinc and silicate co-substituted hydroxyapatite.

    Get PDF
    Experimental chemistry and atomic modelling studies were performed here to investigate a novel ionic co-substitution in hydroxyapatite (HA). Zinc, silicate co-substituted HA (ZnSiHA) remained phase pure after heating to 1100 °C with Zn and Si amounts of 0.6 wt% and 1.2 wt%, respectively. Unique lattice expansions in ZnSiHA, silicate Fourier transform infrared peaks and changes to the hydroxyl IR stretching region suggested Zn and silicate co-substitution in ZnSiHA. Zn and silicate insertion into HA was modelled using density functional theory (DFT). Different scenarios were considered where Zn substituted for different calcium sites or at a 2b site along the c-axis, which was suspected in singly substituted ZnHA. The most energetically favourable site in ZnSiHA was Zn positioned at a previously unreported interstitial site just off the c-axis near a silicate tetrahedron sitting on a phosphate site. A combination of experimental chemistry and DFT modelling provided insight into these complex co-substituted calcium phosphates that could find biomedical application as a synthetic bone mineral substitute.This work was supported by a NSFGRFP grant (DGE-1042796) (RJF) and a Cambridge International Scholarship (RJF). The modelling work was performed using the Darwin Supercomputer of the University of Cambridge High Performance Computing Service (http://www.hpc.cam.ac.uk/), provided by Dell Inc. using Strategic Research Infrastructure Funding from the Higher Education Funding Council for England and funding from the Science and Technology Facilities Council. HC would like to thank the UK Medical Research Council (Grant number U105960399) for their support.This is the final version of the article. It first appeared from Royal Society Publishing via http://dx.doi.org/10.1098/rsif.2015.019
    • …
    corecore